Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 129991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331078

RESUMO

This study developed a composite film for packaging refrigerated common carp fillets using carboxymethyl cellulose (CMC) (1.5 % w/v)/Myrrh gum (MG) (0.25 % w/v) base with the addition of titanium dioxide nanoparticles (TiO2 NPs) (0.25 %, 0.5 %, and 1 %) and Dill essential oil (DEO) (1.5 %, 2.25 %, and 3 %). The film was produced using a casting method and optimized for mechanical and barrier properties. The incorporation of DEO and TiO2 NPs into CMC/MG composite films significantly reduced moisture content (MC) and water vapor permeability (WVP), improved their tensile strength (TS), and increased their antimicrobial and antioxidant properties. Moreover, MG can improve the physicomechanical properties of the CMC/MG composite films. The film components had good compatibility without significant aggregation or cracks. In conclusion, the optimized CMC/MG (1.5 %/0.25 %) film containing TiO2 NPs (0.5 %), and DEO (2.25 %) has the best overall performance and can be a good source for making edible film. Functionally, this bioactive nanocomposite film significantly increased the shelf life of refrigerated fish fillet samples for 12 days by inhibiting microbial growth and reducing the oxidation rate compared to the control sample. The knowledge obtained from this study can guide the development of bio-nanocomposite and biodegradable food packaging films based on CMC/MG to increase the shelf life of food products and environmental protection.


Assuntos
Anethum graveolens , Carpas , Commiphora , Nanocompostos , Nanopartículas , Óleos Voláteis , Resinas Vegetais , Animais , Carboximetilcelulose Sódica/farmacologia , Carne , Embalagem de Alimentos/métodos , Óleos Voláteis/farmacologia
2.
Antibiotics (Basel) ; 12(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887240

RESUMO

Acinetobacter baumannii is a nosocomial pathogen known for its ability to form biofilms, leading to persistent infections and antibiotic resistance. The limited effective antibiotics have encouraged the development of innovative strategies such as using essential oils and their constituents. This study evaluated the efficacy of oregano (Lippia graveolens) essential oil (OEO) and its terpene compounds, carvacrol and thymol, in inhibiting A. baumannii biofilms. These treatments showed a minimum inhibitory concentration of 0.6, 0.3, and 2.5 mg/mL and a minimum bactericidal concentration of 1.2, 0.6, and 5 mg/mL, respectively. Sub-inhibitory doses of each treatment and the OEO significantly reduced biofilm biomass and the covered area of A. baumannii biofilms as measured by fluorescence microscopy. Carvacrol at 0.15 mg/mL exhibited the most potent efficacy, achieving a remarkable 95% reduction. Sub-inhibitory concentrations of carvacrol significantly reduced the biofilm formation of A. baumannii in stainless steel surfaces by up to 1.15 log CFU/cm2 compared to untreated bacteria. The OEO and thymol exhibited reductions of 0.6 log CFU/cm2 and 0.4 log CFU/cm2, respectively, without affecting cell viability. Moreover, the terpenes inhibited twitching motility, a crucial step in biofilm establishment, with carvacrol exhibiting the highest inhibition, followed by OEO and thymol. The study provides valuable insights into the potential of terpenes as effective agents against A. baumannii biofilms, offering promising avenues for developing novel strategies to prevent persistent infections and overcome antibiotic resistance.

3.
Foods ; 12(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37372527

RESUMO

The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.

4.
Antibiotics (Basel) ; 11(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551446

RESUMO

Pathogenic strains of Escherichia coli threaten public health due to their virulence factors and antibiotic resistance. Additionally, the virulence of this bacterium varies by region depending on environmental conditions, agricultural practices, and the use of antibiotics and disinfectants. However, there is limited research on the prevalence of antibiotic-resistant E. coli in agriculture. Therefore, this research aimed to determine the antibiotic resistance of E. coli isolated from the Honeydew melon production system in Hermosillo, Sonora, Mexico. Thirty-two E. coli strains were isolated from 445 samples obtained from irrigation water, harvested melons, the hands of packaging workers, boxes, and discarded melons. The resistance profile of the E. coli strains was carried out to 12 antibiotics used in antimicrobial therapeutics against this bacterium; a high level of resistance to ertapenem (100%) was detected, followed by meropenem (97%), and ampicillin (94%); 47% of the strains were classified as multidrug-resistant. It was possible to identify the prevalence of the extended-spectrum ß-lactamase (ESBLs) gene blaTEM (15.6%), as well as the non-ESBL genes qepA (3.1%) and aac(6')lb-cr (3.1%). The E. coli strains isolated from irrigation water were significantly associated with resistance to aztreonam, cefuroxime, amikacin, and sulfamethoxazole/trimethoprim. Irrigation water, packing workers' hands, and discarded melons showed a higher prevalence of antibiotic-resistant, ESBL, and non-ESBL genes of E. coli strains in a farm and packing facility of Honeydew melon in Hermosillo, Sonora.

5.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136547

RESUMO

Lecithin-dependent thermolabile hemolysin (LDH) is a virulence factor excreted by Vibrio parahaemolyticus, a marine bacterium that causes important losses in shrimp farming. In this study, the function of LDH was investigated through its inhibition by metal ions (Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cu2+) and chemical modification reagents: ß-mercaptoethanol (ßME), phenylmethylsulfonyl fluoride (PMSF) and diethyl pyrocarbonate (DEPC). LDH was expressed in the Escherichia coli strain BL-21, purified under denaturing conditions, and the enzymatic activity was evaluated. Cu2+, Ni2+, Co2+ and Ca2+ at 1 mmol/L inhibited the LDH esterase activity by 20−95%, while Mg2+ and Mn2+ slightly increased its activity. Additionally, PMSF and DEPC at 1 mmol/L inhibited the enzymatic activity by 40% and 80%, respectively. Dose-response analysis showed that DEPC was the best-evaluated inhibitor (IC50 = 0.082 mmol/L), followed by Cu2+ > Co2+ > Ni2+ and PMSF (IC50 = 0.146−1.5 mmol/L). Multiple sequence alignment of LDH of V. parahaemolyticus against other Vibrio species showed that LDH has well-conserved GDSL and SGNH motifs, characteristic of the hydrolase/esterase superfamily. Additionally, the homology model showed that the conserved catalytic triad His-Ser-Asp was in the LDH active site. Our results showed that the enzymatic activity of LDH from V. parahaemolyticus was modulated by metal ions and chemical modification, which could be related to the interaction with catalytic amino acid residues such as Ser153 and/or His 393.


Assuntos
Proteínas Hemolisinas , Vibrio parahaemolyticus , Aminoácidos , Dietil Pirocarbonato , Escherichia coli/metabolismo , Esterases , Proteínas Hemolisinas/metabolismo , Hidrolases , Indicadores e Reagentes , Íons , Lecitinas , Mercaptoetanol , Fluoreto de Fenilmetilsulfonil , Vibrio parahaemolyticus/metabolismo , Fatores de Virulência
6.
Foods ; 11(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36076774

RESUMO

Aqueous and ethanolic pomegranate peel extracts (PPE) were studied as a source of phenolic compounds with antimicrobial, anti-quorum sensing, and antioxidant properties. The aqueous extract showed higher total phenolic and flavonoid content (153.43 mg GAE/g and 45.74, respectively) and antioxidant capacity (DPPH radical inhibition: 86.12%, ABTS radical scavenging capacity: 958.21 mg TE/dw) compared to the ethanolic extract. The main phenolic compounds identified by UPLC-DAD were chlorogenic and gallic acids. The aqueous PPE extract showed antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, Candida tropicalis (MICs 19-30 mg/mL), and anti-quorum sensing activity expressed as inhibition of Chromobacterium violaceum violacein production (%). The aqueous PPE extracts at 25 mg/mL applied on alfalfa sprouts reduced psychrophilic bacteria (1.12 Log CFU/100 g) and total coliforms (1.23 Log CFU/100 g) and increased the antioxidant capacity of the treated sprouts (55.13 µmol TE/100 g (DPPH) and 126.56 µmol TE/100 g (ABTS)) compared to untreated alfalfa. This study emphasizes PPE's antioxidant and antimicrobial activities in alfalfa sprouts preservation.

7.
Int J Food Microbiol ; 374: 109736, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613497

RESUMO

Escherichia coli is among the most prevalent food contaminant microorganisms that have evolved, generating variants based on their effects on the host; these include commensals or pathobiont strains. The last classifications of E. coli intestinal pathobionts found in this review are enteroinvasive, enterohemorrhagic, enteropathogenic, enterotoxigenic, diffusely adherent, and enteroaggregative strains. Meanwhile, the most ancestral are enteropathogenic and enteroaggregative, and the most contemporaries are the enterotoxigenic and enteroinvasive strains. These pathobionts have been proposed based on their infective mechanisms, including toxin production, adherence effects, and tissue damage. It is also evidenced that environmental stresses, including bacterial exposition to antibiotics and disinfectants, contribute to this evolution. Therefore, new antibacterial and antivirulence agents are being explored, mainly from natural sources. In this context, this review discusses the diversity of E. coli pathobionts, their participation in foodborne outbreaks, and strategies to survey and control their spread and virulence.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos , Diarreia/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Inocuidade dos Alimentos , Humanos , Virulência
8.
Life (Basel) ; 12(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35455025

RESUMO

The hypoglycemic effect of functional phytochemicals has been evaluated in diabetic rodents but scarcely in its premorbid condition (prediabetes; PD). This study aimed to evaluate a mango (cv. Ataulfo) peel hydroethanolic (20:80) extract (MPE) for in vivo glycemic/lipidemic-normalizing effect and in vitro enzyme inhibitory (α-amylase/α-glucosidase) activity. The polyphenolic MPE (138 mg EAG.g−1, mainly gallic acid and mangiferin) with antioxidant capacity (DPPH• 34 mgTE.g−1) was fed to PD rats (induction: high-fat diet (60% energy) + single dose streptozotocin (35 mg·kg−1), 4 weeks). At the 8th week, fasting glycemia (FG), oral glucose tolerance test, and insulin sensitivity indexes (HOMA-IR, HOMA-ß) > blood lipid-normalizing effect were documented as healthy controls > MPE > disease (PD) controls, which was possibly related to the extract's concentration−response in vitro enzyme inhibitory activity (IC50 ≈ 0.085 mg·mL−1). MPE is a rich source of glucose-lowering phytochemicals for the primary prevention of type 2 diabetes.

9.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163966

RESUMO

Pseudomonas aeruginosa infections have become more challenging to treat and eradicate due to their ability to form biofilms. This study aimed to produce hydrophobic nanoparticles by grafting 11-carbon and three-carbon alkyl chains to a chitosan polymer as a platform to carry and deliver carvacrol for improving its antibacterial and antibiofilm properties. Carvacrol-chitosan nanoparticles showed ζ potential values of 10.5-14.4 mV, a size of 140.3-166.6 nm, and an encapsulation efficiency of 25.1-68.8%. Hydrophobic nanoparticles reduced 46-53% of the biomass and viable cells (7-25%) within P. aeruginosa biofilms. Diffusion of nanoparticles through the bacterial biofilm showed a higher penetration of nanoparticles created with 11-carbon chain chitosan than those formulated with unmodified chitosan. The interaction of nanoparticles with a 50:50 w/w phospholipid mixture at the air-water interface was studied, and values suggested that viscoelasticity and fluidity properties were modified. The modified nanoparticles significantly reduced viable P. aeruginosa in biofilms (0.078-2.0 log CFU·cm-2) and swarming motility (40-60%). Furthermore, the formulated nanoparticles reduced the quorum sensing in Chromobacterium violaceum. This study revealed that modifying the chitosan polarity to synthesize more hydrophobic nanoparticles could be an effective treatment against P. aeruginosa biofilms to decrease its virulence and pathogenicity, mainly by increasing their ability to interact with the membrane phospholipids and penetrate preformed biofilms.


Assuntos
Biofilmes/efeitos dos fármacos , Cimenos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Quitosana/química , Cimenos/química , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Virulência , Fatores de Virulência
10.
Foods ; 11(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430928

RESUMO

One of the biggest problems faced by food industries is the generation of large amounts of agro-industrial byproducts, such as those derived from fruit processing, as well as the negative effects of their inadequate management. Approximately 1/3 of the food produced worldwide is unused or is otherwise wasted along the chain, which represents a burden on the environment and an inefficiency of the system. Thus, there is growing interest in reintroducing agro-industrial byproducts (both from fruits and other sources) into the processing chain, either by adding them as such or utilizing them as sources of health-promoting bioactive compounds. The present work discusses recent scientific studies on the nutritional and bioactive composition of some agro-industrial byproducts derived from fruit processing, their applications as ingredients to supplement baked foods, and their main biological activities on the consumer's health. Research shows that agro-industrial fruit byproducts can be incorporated into various baked foods, increasing their fiber content, bioactive profile, and antioxidant capacity, in addition to other positive effects such as reducing their glycemic impact and inducing satiety, all while maintaining good sensory acceptance. Using agro-industrial fruit byproducts as food ingredients avoids discarding them; it can promote some bioactivities and maintain or even improve sensory acceptance. This contributes to incorporating edible material back into the processing chain as part of a circular bioeconomy, which can significantly benefit primary producers, processing industries (particularly smaller ones), and the final consumer.

11.
Foods ; 10(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34828991

RESUMO

Ehretia tinifolia Linnaeus (Boraginacea) and Sideroxylon lanuginosum Michaux (Sapotaceae) are wild fruits consumed in North America and are appreciated for their pleasant flavor and sweet taste. However, details regarding their composition and biological properties in the available literature are scarce. This study reports the phenolic composition, antioxidant, antiproliferative activities, and digestive enzymatic inhibition of amberlite-retained methanolic extracts from both fruits. Results revealed that these wild fruit extracts are rich in antioxidants. S. lanuginosum had lower phenolic but higher flavonoid contents (21.4 ± 1.5 mg GAE/100 g FW and 6.42 ± 0.9 mg CE/100 g FW) than E. tinifolia (64.7 ± 2.6 mg GAE/100 g FW and 5.1 ± 0.4 mg CE/100 g FW). HPLC-DAD-MS/MS analysis showed rosmarinic acid as a major polyphenol in E. tinifolia and quercetin glucoside in S. lanuginosum. Polyphenols content in E. tinifolia was related to a significant free radical scavenging ability: DPPH (EC50 = 0.32 ± 0.03 mg/mL), TEAC (4134 ± 9.7 µM TE/g dry extract), and hemolysis inhibition (IC50 = 58.55 ± 2.4 µg/mL). Both extracts were capable of inhibiting α-glucosidase, partially inhibiting α-amylase, and showed no inhibition against lipase, while showing antiproliferative activity against HeLa, HT-29 and MCF-7 cancer cell lines. Our study revealed that these wild fruit extracts are rich in health-beneficial phytochemicals and hold significant potential for elaborating functional foods.

12.
Biomedicines ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829898

RESUMO

Bacterial diseases and reactive oxygen species can cause dental caries and oral cancer. Therefore, the present review analyzes and discusses the antibacterial and antioxidant properties of synthetic and plant-derived substances and their current and future patents to formulate dental products. The reviewed evidence indicates that chlorhexidine, fluorides, and hydrogen peroxide have adverse effects on the sensory acceptability of oral care products. As an alternative, plant-derived substances have antimicrobial and antioxidant properties that can be used in their formulation. Also, adding plant metabolites favors the sensory acceptability of dental products compared with synthetic compounds. Therefore, plant-derived substances have antibacterial, antioxidant, and flavoring activity with the potential to be used in the formulation of toothpaste, mouth rinses, dentures cleansers-fixatives, and saliva substitutes.

13.
Protein Pept Lett ; 28(12): 1330-1337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34629038

RESUMO

The development of effective technologies to cope with persistent and progressive global problems in human health and sustainable development has become an imperative worldwide challenge. The search for natural alternatives has led to the discovery of bacteriocins, which are potent protein antimicrobial compounds produced by most bacteria. The relevance of these molecules is evidenced by more than 4,500 papers published in the last decade in Scopus indexed journals highlighting their versatility and potential to impact various aspects of daily life, including the food industry, medicine, and agriculture. Bacteriocins have demonstrated antibacterial, antifungal, antiviral, and anticancer activities, and they also act as microbiota regulators and plant growth promoters. This mini-review aims to provide insights into the current state and emerging roles of bacteriocins, as well as their potential and limitations as feasible solutions against current diverse global problems.


Assuntos
Anti-Infecciosos , Bacteriocinas , Anti-Infecciosos/química , Anti-Infecciosos/classificação , Anti-Infecciosos/uso terapêutico , Bacteriocinas/química , Bacteriocinas/classificação , Bacteriocinas/uso terapêutico , Humanos
14.
Polymers (Basel) ; 12(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322661

RESUMO

The aim of this study was evaluation of the physico-chemical properties and adhesion of microorganisms on poly(lactic acid) (PLA)-based films loaded with grapevine cane extract (5-15 wt%). The films were processed in a compression molding machine and characterized by mechanical, thermal, water vapor barrier and microbiological tests. The best physical-chemical properties for PLA film containing 10 wt% of extract were obtained. The addition of 10 wt% of extract into PLA films led to decrease of tensile strength for 52% and increase in elongation at break for 30%. The water vapor barrier of this film formulation was enhanced for 55%. All films showed thermal stability up to 300 °C. The low release of the active compounds from films negatively influenced their antimicrobial and antifungal activity. Botrytis cinerea growth inhibition onto PLA containing extracts (PLA-E) films was in the range between 15 and 35%. On the other side, PLA/extract films exhibited the antiadhesive properties against Pseudomonas aeruginosa, Pectobacterium carotovorum, Saccharomyces pastorianus, and Listeria monocytogenes, which could imply their potential to be used as sustainable food packaging materials for preventing microbial contamination of food.

15.
Molecules ; 23(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380712

RESUMO

The objective of this study was to evaluate the effect of combining catechin, protocatechuic, and vanillic acids against planktonic growing, adhesion, and biofilm eradication of uropathogenic Escherichia coli (UPEC), as well as antioxidant agents. The minimum inhibitory concentrations (MIC) of protocatechuic, vanillic acids and catechin against the growth of planktonic bacteria were 12.98, 11.80, and 13.78 mM, respectively. Mixing 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin resulted in a synergistic effect acting as an MIC. Similarly, the minimum concentrations of phenolic compounds to prevent UPEC adhesion and biofilm formation (MBIC) were 11.03 and 7.13 mM of protocatechuic and vanillic acids, respectively, whereas no MBIC of catechin was found. However, combinations of 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin showed a synergistic effect acting as MBIC. On the other hand, the minimum concentrations to eradicate biofilms (MBEC) were 25.95 and 23.78 mM, respectively. The combination of 3.20 mM protocatechuic acid, 2.97 mM vanillic acid, and 1.72 mM catechin eradicated pre-formed biofilms. The antioxidant capacity of the combination of phenolics was higher than the expected theoretical values, indicating synergism by the DPPH•, ABTS, and FRAP assays. Effective concentrations of catechin, protocatechuic, and vanillic acids were reduced from 8 to 1378 times when combined. In contrast, the antibiotic nitrofurantoin was not effective in eradicating biofilms from silicone surfaces. In conclusion, the mixture of phenolic compounds was more effective in preventing cell adhesion and eradicating pre-formed biofilms of uropathogenic E. coli than single compounds and nitrofurantoin, and showed antioxidant synergy.


Assuntos
Antibacterianos/farmacologia , Catequina/farmacologia , Hidroxibenzoatos/farmacologia , Ácido Vanílico/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Catequina/química , Humanos , Hidroxibenzoatos/química , Testes de Sensibilidade Microbiana , Plâncton/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/patogenicidade , Ácido Vanílico/química
16.
J Food Sci Technol ; 55(11): 4413-4423, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30333637

RESUMO

Agave plants contain different bioactive compounds that are related to different biological activities; however, the application of Agave as a food additive has rarely been evaluated. The objective of this study was to evaluate the antioxidant and antimicrobial potential of Agave angustifolia extract (AAE) on pork patties stored at 4 °C during 10 days. According to the spectrophotometric analysis, AAE contained phenolic compounds and saponins. In addition, AAE exhibited antioxidant activity based on DPPH, ABTS and FRAP assays (94.2, 239.1 and 148.8 µmol ET/g, respectively). Likewise, AAE showed bactericidal activity against Staphylococcus epidermidis (60 mg/mL) and Escherichia coli (60 mg/mL). AAE demonstrated a protective effect against oxidative processes (TBARS and metmyoglobin) in patties compared to the control group. Mesophilic and psychotropic counts showed that AAE exhibited a weak antimicrobial effect. AAE showed a protective effect on redness and lightness (at 3 and 10 days of storage, respectively). Sensory evaluation found that AAE had no effect on the analyzed parameters. AAE exhibited antioxidant activity that preserve quality and extended the shelf life of pork patties.

17.
Foods ; 7(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061481

RESUMO

Plant extracts have the potential to be used as food additives; however, their use have been limited by causing undesirable changes in the sensory attributes of foods. We characterized the mango seed extract as a preserving agent for fresh-cut mangoes. We established the maximum concentration of extract that, while increasing the antioxidant activity, and limiting microbial contamination of the fruit, did not negatively affect fruit sensory acceptability. The extract contained 277.4 g gallic acid equivalent (GAE)/kg dw (dry weight) of polyphenols and 143.7 g quercetin equivalent (QE)/kg dw of flavonoids. Antioxidant capacity values were 2034.1 and 4205.7 µmol Trolox equivalent (TE)/g against 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals, respectively. Chromatographic analysis revealed the presence of gallic and chlorogenic acids. The extract (16 g/L) inhibited the growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. The highest concentration with sensory acceptability was 6.25 g/L. At such concentration, the extract preserved fresh-cut fruits, increasing polyphenols (0.427 g GAE/kg fw (fresh weight)), flavonoid content (0.234 g QE/kg fw) and antioxidant activity (DPPH = 2.814 and ABTS = 0.551 mol TE/kg fw). It also reduced inoculated bacteria (range: 5.50 × 10³ to 1.44 × 105 colony forming units (CFU)/g). These results showed the importance of considering consumer acceptability to determine the effective concentration of plant extracts as additives.

18.
J Sci Food Agric ; 98(7): 2461-2474, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29023758

RESUMO

Agave leaves are considered a by-product of alcoholic beverage production (tequila, mezcal and bacanora) because they are discarded during the production process, despite accounting for approximately 50% of the total plant weight. These by-products constitute a potential source of Agave extracts rich in bioactive compounds, such as saponins, phenolic compounds and terpenes, and possess different biological effects, as demonstrated by in vitro and in vivo tests (e.g. antimicrobial, antifungal, antioxidant, anti-inflammatory, antihypertensive, immunomodulatory, antiparasitic and anticancer activity). Despite their positive results in biological assays, Agave extracts have not been widely evaluated in food systems and pharmaceutical areas, and these fields represent a potential route to improve the usage of Agave plants as food additives and agents for treating medical diseases. © 2017 Society of Chemical Industry.


Assuntos
Agave/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Bebidas Alcoólicas/análise , Animais , Humanos , Folhas de Planta/química , Resíduos/análise
19.
J Food Sci Technol ; 51(9): 1674-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190824

RESUMO

Edible coatings can extend the shelf-life of many foods, controlling moisture and solute migration, gas exchange and oxidative reaction rates. Besides, edible coatings can be used as carriers of bioactive compounds to improve the quality of food products such as antioxidants, antimicrobials, flavors and probiotics. These approaches can be useful to extend shelf-life as well as provide a functional product. When edible coatings are used as a matrix holding bioactive compounds remarkable benefits arise; off odors and flavors can be masked, bioactive compounds are protected from the environment, and controlled release is allowed. In this sense, the present review will be focused on analyzing the potential use of encapsulation with edible coatings to incorporate bioactive compounds, solving the disadvantages of direct application.

20.
J Food Sci ; 79(2): R129-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24446991

RESUMO

Many food preservation strategies can be used for the control of microbial spoilage and oxidation; however, these quality problems are not yet controlled adequately. Although synthetic antimicrobial and antioxidant agents are approved in many countries, the use of natural safe and effective preservatives is a demand of food consumers and producers. This paper proposes medicinal plants, traditionally used to treat health disorders and prevent diseases, as a source of bioactive compounds having food additive properties. Medicinal plants are rich in terpenes and phenolic compounds that present antimicrobial and antioxidant properties; in addition, the literature revealed that these bioactive compounds extracted from other plants have been effective in food systems. In this context, the present hypothesis paper states that bioactive molecules extracted from medicinal plants can be used as antimicrobial and antioxidant additives in the food industry.


Assuntos
Anti-Infecciosos/isolamento & purificação , Antioxidantes/isolamento & purificação , Conservantes de Alimentos/isolamento & purificação , Modelos Biológicos , Plantas Medicinais/química , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/química , Antioxidantes/efeitos adversos , Antioxidantes/química , Comportamento do Consumidor , Etnofarmacologia , Conservantes de Alimentos/efeitos adversos , Conservantes de Alimentos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...